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Abstract

Professional forecasters’ long-run inflation expectations overreact to news and exhibit
persistent, predictable biases in forecast errors. A model incorporating overconfidence in
private information and a persistent expectations bias—which generates persistent forecast
errors across most forecasters—accounts for these two features of the data, offering a valuable
tool for studying long-run inflation expectations. Our analysis highlights substantial, time-
varying heterogeneity in forecasters’ responses to public information, with sensitivity declining
across all forecasters when monetary policy is constrained by the effective lower bound. The
model provides a framework to evaluate whether policymakers’ communicated inflation paths
are consistent with anchored long-run expectations.
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1 Introduction

Understanding how long-run inflation expectations are formed is essential for modern monetary
policy theory and practice. In this paper, we develop a flexible framework for analyzing how
U.S. professional forecasters form expectations about long-run inflation. A model featuring
overconfidence in private information and persistent expectations bias that engenders highly
persistent forecast errors explains the key time-series and cross-sectional features of the
data. Our analysis offers new insights into the types of cognitive distortions that shape
the formation of beliefs about long-run price dynamics. Moreover, the model allows the
estimation of the heterogeneous responsiveness of long-run inflation expectations to public
and private information. Finally, we show how the model can identify short-term inflation
trajectories that are consistent with anchoring of long-run expectations, a central goal for
monetary policy.

We identify two key challenges in explaining the combined cross-sectional and time-
series dynamics of long-run inflation expectations. First, forecast errors exhibit a significant
degree of serial correlation, substantially higher than that observed for short-term inflation
expectations. Second, long-run expectations significantly overreact to news, in contrast to
little to no overreaction observed in short-term inflation expectations. These findings highlight
the unique complexities involved in modeling long-run inflation expectations, setting them
apart from their short-run counterparts.

We posit that forecasters solve a dynamic signal extraction problem, taking as given that
inflation comes from a time-varying-parameter, trend-cycle time-series model. We build on
the standard noisy information framework, e.g., Sims (2003), Woodford (2003), Maćkowiak
and Wiederholt (2009).1 Each forecaster observes three sources of information about the trend
component of inflation: the quarterly inflation rate, a coordinating signal, and an idiosyncratic
signal. Including inflation as a signal enables us to estimate the sensitivity of long-run inflation
expectations to changes in short-run inflation, a measure of anchoring proposed by Bernanke
(2007). It also allows forecasters to estimate the parameters of the trend-cycle model in
real time. The coordinating signals—which are perfectly correlated across forecasters—
explain co-movement in forecasters’ expectations. We interpret these signals as representing
forward-looking public information, including policymakers’ communications, widely followed
media, and any events unrelated to past inflation that happen to align forecasters’ beliefs
about the central bank’s commitment to price stability.2 The idiosyncratic signals capture

1Coibion and Gorodnichenko (2012) show that noisy information models match key empirical facts
regarding short-run expectations of professional forecasters, consumers, firms, and central banks.

2Nimark (2014), Chahrour, Nimark and Pitschner (2021) examine how the media industry selects signals
observed by economic agents and the implications of this selection for business cycles.
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individual judgments or private information to help account for the heterogeneity in forecasters’
expectations.

A model of long-run inflation expectations should incorporate the ability to capture
nonstationary dynamics, including periods of drift. Trend-cycle models allow drift by design.
Historical episodes, such as the sustained inflation surge of the 1970s, the long period of
inflation below the Fed’s target in the 2010s, or the resurgence of inflation following the
pandemic, highlight the importance of capturing nonstationary dynamics. Additionally, the
long-run inflation expectations of many forecasters exhibit little evidence of mean reversion,
underscoring the need for models that can accommodate extended deviations from stability.
By contrast, most models of short-term inflation expectations are built on the assumption of
mean reversion so that inflation expectations are always anchored. Our trend-cycle model
also has time-varying parameters to capture structural breaks that may have influenced
inflation over the long sample period required to accurately estimate the trend.

We examine the model under different assumptions about the forecasters’ cognitive abilities.
This enables us to test for potential deviations from rationality in the way professional
forecasters form their expectations. Specifically, we begin by assuming that forecasters have
rational expectations and then evaluate whether this assumption is consistent with the data.
Under rational expectations, forecasters are presumed to know the time-varying parameters
of the trend-cycle model at each point in time, as well as the precision of each signal in
conveying information about trend inflation. However, with our signal structure, they are
imperfectly informed, as they cannot fully disentangle the drivers of inflation within the
trend-cycle model from the signals they observe.

We estimate the model in two steps. First, we estimate the time-varying parameters of our
trend-cycle model using quarterly inflation data from the first quarter of 1959 (1959Q1) to
2023Q2. In the second step, we assume the forecasters in our panel data (that begins in 1991Q3)
are given the parameters of the trend-cycle model and then estimate the parameters of the
signal extraction problem they face. The second-step estimation is performed using the time
series of inflation, the two-sided (smoothed) estimates of the trend obtained from the first step,
and the long-run expectations of the panel of forecasters. This two-step estimation approach
offers a significant advantage by facilitating identification of the sensitivity of expectations to
coordinating and idiosyncratic signals, which are unobservable to the econometrician.

The model with rational forecasters does not fit the data well and reveals two major
sources of misspecification. First, the in-sample estimates of the i.i.d. innovations to the
coordinating signals exhibit serial correlation. This deviation from the white-noise assumption
underscores the model’s inability to account for the persistent forecast errors characterizing
the long-run inflation expectations. Second, the in-sample estimates of the innovations to the
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idiosyncratic signals display excess volatility, skewness, and kurtosis, highlighting the model’s
failure to explain the overreaction in long-run inflation expectations.

We then relax the assumption of rationality to investigate the behavioral features a theory
of long-run inflation expectations should include to explain the data. To this end, we allow
for the possibility that forecasters missperceive certain parameters of their signal extraction
problem, introducing the possibility of cognitive biases. Crucially, we do not impose any
specific biases a priori, nor do we target any particular misspecification of the rational model.
Instead, the likelihood estimation of the model identifies the deviations necessary to correct
the misspecification of the rational model, which is a special case of the behavioral model.

Relaxing the rationality assumptions allows the model to overcome the aforementioned
misspecification, revealing two major deviations from rationality. First, in the estimated
behavioral model, the coordinating signal leads to highly persistent forecast errors, a phe-
nomenon we term persistent expectations bias. This cognitive bias allows the behavioral
model to account for the highly persistent forecast errors characterizing the long-run inflation
expectations in the data. Second, in the estimated model, forecasters overestimate the
precision of their idiosyncratic signals. Overconfidence in private information is essential for
the model to explain overreaction in long-run inflation expectations. Notably, we find that
almost all professional forecasters in our sample are influenced by these two cognitive biases.

In the behavioral model, forecasters’ expectations about long-run inflation exhibit minimal
sensitivity to inflation, which implies that transitory shocks to inflation, such as cyclical and
i.i.d. shocks in the trend-cycle model, have negligible effects on forecasters’ long-run inflation
expectations. This result suggests that temporary deviations of inflation from its target do
not undermine professional forecasters’ confidence in the central bank’s ability to stabilize
inflation over the long run.3

In contrast, the sensitivity of long-run inflation expectations to the coordinating signal is
relatively large, on average, and varies significantly across forecasters. During periods when
the federal funds rate is constrained by the effective lower bound (ELB), the median sensitivity
declines dramatically. This suggests that the policy rate is a valuable communications tool
for a central bank to shape long-run inflation expectations. At the ELB, the central bank
loses this tool. This result is also consistent with theoretical insights from the literature on
models with dispersed information, dating back to Morris and Shin (2002) and Woodford
(2003), who demonstrate that public signals serve as focal points for coordinating dispersed
expectations about the economy’s fundamentals.

3This property aligns closely with Bernanke (2007)’s definition of anchored inflation expectations. This
concept of anchoring has been tested extensively in several empirical studies, e.g. Gürkaynak, Levin, Marder
and Swanson (2007), Dräger and Lamla (2014), Corsello, Neri and Tagliabracci (2021), Barlevy, Fisher and
Tysinger (2021), Armantier, Sbordone, Topa, Van der Klaauw and Williams (2022).
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Our approach leverages the entire distribution of forecasters’ long-run inflation expectations
to estimate their sensitivity to public or private sources of information. By estimating
heterogeneous sensitivities, we control for compositional effects when we measure average
expectations. Accounting for compositional effects is particularly important in light of the
critique of conditional mean forecasts highlighted by Engelberg, Manski and Williams (2010).

Finally, our model provides a framework to assess whether the inflation paths communi-
cated by policymakers align with their objective of maintaining anchored long-run inflation
expectations. To illustrate how this analysis can be carried out, we use the estimated behav-
ioral model to predict the inflation path consistent with stable long-run inflation expectations
from the fourth quarter of 2022 onward, a period when trend inflation reached one of its
highest levels in the U.S. over the past 30 years. Despite this, mean long-run CPI inflation
expectations remained close to target. According to our model, the inflation path consistent
with stable long-run expectations closely mirrors the rapid decline in U.S. inflation observed
during the first four quarters of 2023. Intriguingly, the anchoring-compatible inflation path
also aligns closely with the inflation projections released by the Federal Reserve’s Federal
Open Market Committee (FOMC) in December 2022 for the subsequent three years.

The behavioral model still rests on strong assumptions, such as forecasters agreeing on
the trend-cycle model being the correct underlying model of inflation. This assumption is
in practice less stringent than it may appear, since the model features innovations that can
have persistent effects on the idiosyncratic signals. The estimated degree of persistence is
forecaster-specific and can be large (potentially near permanent), allowing our model to
capture long-lasting disagreement about the process driving inflation or about judgment calls
concerning long-run inflation outcomes.4 We also study a version of the model in which
forecasters estimate the parameters of the trend-cycle model in real time. This change to the
rational model alone would not resolve its two key sources of misspecification.

While the model considered in this paper could, in principle, be estimated using data on
households’ or firms’ expectations, focusing on professional forecasters is more convenient.
Since professional forecasters do not influence price-setting in the economy directly, we can
avoid modeling feedback from expectations to the underlying inflation dynamics. Incorporat-
ing such feedback would be complex and could obscure the primary objective of this paper:
understanding how long-run inflation expectations are formed.

4Indeed, the latter seems to be more likely, as Stark (2013) documents that forecasters use both models and
subjective considerations in reporting their projections, rather than just models. Moreover, fewer forecasters
rely on models to forecast at long horizons (three or more years out) than at short horizons. In the Survey
of Professional Forecasters administered by the European Central Bank, only 10 percent of forecasters rely
completely on statistical models to forecast long-run inflation expectations (see de Vincent-Humphreys,
Dimitrova, Falck, Henkel and Meyler (2019)).
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Understanding how professional forecasters, as opposed to households or firms, form
long-run inflation expectations is crucial, even though these agents are not directly involved
in price setting. As attentive observers of central bank actions and communications, their
expectations can serve as early indicators of inflation expectations becoming unanchored
more broadly. This underscores why scholars and policymakers devote significant time and
resources to studying these expectations.5

Previous research has shown that forecasters may strategically misreport their information
or exhibit herd behavior for various reasons (Ehrbeck and Waldmann, 1996). If such strategic
behaviors contribute to the coordination of inflation expectations, they would be captured
by the coordinating signals in our model. However, the strategic behaviors documented in
this literature primarily pertain to short-term expectations and may not necessarily apply to
longer-run expectations. Additionally, as it takes 10 years for the forecast error to be realized,
some of the incentives to misreport identified in these studies may not be relevant for our
analysis.

2 Relation to the literature

A large and growing literature documents that professional forecasters’ short-run expecta-
tions about a wide range of macroeconomic variables violate the Full Information Rational
Expectations (FIRE) assumption. Notable examples include Coibion and Gorodnichenko
(2015), Bordalo, Gennaioli, Ma and Shleifer (2020), Kohlhas and Walther (2021), Bianchi,
Ilut and Saijo (2023), Kučinskas and Peters (2022), Rossi and Sekhposyan (2016), Afrouzi,
Kwon, Landier, Ma and Thesmar (2023), and Born, Enders and Müller (2023). Farmer,
Nakamura and Steinsson (2023) show that imperfect knowledge of the forecasting model,
particularly its long-run properties, and reasonable initial beliefs can account for several
anomalies in short-term consensus expectations about GDP growth, nominal interest rates,
and deviations from the expectations hypothesis of the term structure of interest rates.
However, they do not examine how professional forecasters form expectations about long-run
inflation or estimate their model using cross-sectional information. Angeletos, Huo and
Sastry (2021) show that a framework where agents misperceive the precision or persistence of
certain variable movements explains why U.S. professional forecasters and households initially
underreact and later overreact to business cycle shocks. While this literature has largely
focused on short-run expectations, our focus is on long-run inflation expectations, which are

5For example, the Federal Reserve has developed the Index of Common Inflation Expectations, which
captures the co-movement of various inflation expectations measures, including the professional forecasters’
expectations used in this paper (Ahn and Fulton, 2021). Academic studies examining different aspects of
professional forecasters’ expectations are discussed below.
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central to modern monetary policy theory and practice.
Bordalo, Gennaioli, Ma and Shleifer (2020) apply the methodology introduced by Coibion

and Gorodnichenko (2015) to individual forecaster data from the U.S. Survey of Professional
Forecasters (SPF) and document that overreaction is a pervasive feature of short-run macroe-
conomic expectations. We employ their methodology (as best we can) to show that long-run
inflation expectations display a large overreaction. Our noisy information model attributes
this overreaction to forecasters’ overconfidence in private information.

Broer and Kohlhas (2022) provide evidence of overreaction in SPF expectations for the
GNP/GDP deflator over the short run (up to six quarters ahead) and show that this phe-
nomenon cannot be explained by a stylized noisy information model with rational expectations.
Our study is complementary to theirs. While we find that overconfidence alone is sufficient to
explain overreaction in long-run inflation expectations, Broer and Kohlhas (2022) show that a
broad notion of overconfidence and the presence of endogenous public signals is necessary for
the noisy information model to explain short-run inflation expectations. We also show that
overconfidence alone cannot successfully explain persistent forecast errors, a characteristic of
long-run inflation expectations that is not shared with short-term expectations.

Similarly, Adam, Kuang and Xie (2024) use a noisy information model to show that
biases consistent with overconfidence in private information are pervasive in short-term SPF
forecasts. Bianchi et al. (2022) use a machine-learning algorithm to build an appropriate
benchmark for quantifying biases in survey responses. They find that survey respondents
typically place too much weight on the private or judgmental component of their forecasts
and too little weight on objective, publicly available economic information. This finding
echoes our results regarding overconfidence in private information.

An alternative explanation for overreaction, which has been extensively documented in the
context of short-term expectations, arises from models with diagnostic expectations (Bordalo,
Gennaioli, Ma and Shleifer, 2020).6 Our analysis is conducted within the class of models
with noisy information, and evaluating whether a model with diagnostic expectations can
explain the observed long-run inflation expectations lies beyond the scope of this paper.

Starting with Mankiw, Reis and Wolfers (2004), a growing body of literature has used
individual forecasters’ expectations to explain how the cross-section of expectations evolves
over time, across forecast horizons, and across countries (e.g. Patton and Timmermann
(2010), Andrade and Bihan (2013), Andrade, Crump, Eusepi and Moench (2016), and Dovern,
Fritsche and Slacalek (2012)), also finding evidence of persistent forecast disagreement among
U.S. professional forecasters. More recently, Goldstein and Gorodnichenko (2022) develop

6Diagnostic expectations refer to a belief formation process in which individuals overemphasize recent or
salient information when making forecasts or predictions.
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a model where forecasters receive noisy signals about the future and estimate it using the
cross-sectional distribution of the SPF short-term forecasts of CPI inflation. They find that
forward-looking signals are crucial to explaining the cross-sectional dispersion in short-term
forecasts. In our model, signals also contain forward-looking information, as they pertain
to trend inflation, which is estimated using a two-sided procedure that conditions on past
and future inflation. Consequently, in every period, forecasters in our model receive future
information about low-frequency movements in inflation.

Giacomini, Skreta and Turen (2020) use professional forecasts on U.S. inflation in the
18 months prior to the inflation release and present evidence that forecast disagreement
persists as uncertainty resolves. In their theory forecasters are rational and update their
expectations using Bayes’ rule and disagreement stems from heterogeneous priors about the
initial forecast, heterogeneous models to interpret public information, and heterogeneous
inattention. Goldstein (2023) presents evidence of persistent forecast disagreement among
U.S. professional forecasters, highlighting variation over time, across individuals, and across
forecast horizons – particularly for average 10-year inflation expectations, where persistence
is especially pronounced. His analysis primarily attributes the persistence to differences in
the degree of inattention among rational forecasters. In contrast, we introduce behavioral
biases into an imperfect information model and show that two key biases enable the model
to explain the significant overreactions and the persistent, predictable forecast errors that
characterize professional forecasters’ long-run inflation expectations.

Kozicki and Tinsley (2001) were among the first to estimate the term structure of
professional forecasters’ inflation expectations by using reduced-form models. Aruoba (2020)
estimates a model of the term structure of expectations featuring three factors (level, slope,
and curvature) using survey data. Crump, Eusepi, Moench and Preston (2023) document
the behavior of the term structure of expectations of GDP growth, inflation, and the policy
rate using multiple surveys of professional forecasters for the U.S. and fit this rich data set
with a multivariate reduced-form model. Herbst and Winkler (2021) and Ahn and Farmer
(2024) study dynamic factor models of the term structure of disagreement among inflation
forecasts using the SPF micro data. Neither of these two studies evaluates the rationality of
professional forecasters’ beliefs about long-run inflation.

Our trend-cycle model builds on Stock and Watson (2007) and Chan, Clark and Koop
(2018) and is closely related to the work of Mertens and Nason (2020), Cogley, Primiceri and
Sargent (2010), and Hasenzagl, Pellegrino, Reichlin and Ricco (2020).7 Papers estimating
trend-cycle models most similar to ours link trend inflation to survey-based expectations to
explore the implications of changes in the inflation process for inflation forecasts and the

7Faust and Wright (2013) review the earlier literature on trend-cycle models.
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anchoring of expectations. Henzel (2013), Mertens and Nason (2020), and Nason and Smith
(2021) focus on average short-run inflation forecasts from the SPF, treating trend inflation as
the long-run forecast of inflation, though long-run inflation expectations themselves are not
explicitly included as observables in their estimations. Mertens (2016) estimates Beveridge-
Nelson decompositions to obtain trend inflation estimates, incorporating information from
inflation, survey forecasts, and long-term interest rates. These studies focus primarily on the
time series dynamics of average inflation expectations, with limited focus on the cross-sectional
dimension of the data.

Our paper is also connected to the literature on the anchoring of inflation expectations.
Influential contributions in this area include Orphanides and Williams (2005), Beechey,
Johannsen and Levin (2011), and Carvalho, Eusepi, Moench and Preston (2023). These
studies examine signal extraction problems where agents attempt to infer the central bank’s
inflation target based on past data. However, by focusing on a representative agent, they do
not incorporate the cross-sectional information that is central to our analysis. While those
papers define anchoring as the stability of average long-horizon inflation forecasts around the
central bank’s inflation target, other definitions of anchoring have also been proposed in the
literature.

Kurmar, Afrouzi, Coibion and Gorodnichenko (2015) offer a taxonomy of definitions of
expectations anchoring and evaluate them for New Zealand using survey data. By showing
how to estimate the dynamics of expectations’ sensitivity to coordinating signals, we offer a
new way to assess how anchored expectations are in a panel of professional forecasters. A
novel feature of our analysis is the presence of nonstationary dynamics – specifically, trend
inflation that can become ingrained in inflation expectations. This allows us to assess the
risk of de-anchoring in real time and identify appropriate communications to mitigate it.

Reis (2022) relates inflation anchoring to changes in the cross-sectional variance and
skewness of survey measures of inflation expectations. Grishchenko, Mouabbi and Renne (2019)
use a trend-cycle model with time-varying volatility to relate anchoring to the probability
of future inflation being in a certain range of the inflation target as measured by survey
expectations. Binder, Janson and Verbrugge (2023) develop a measure to assess the degree
of anchoring of expectations in a panel of professional forecasters. Their measure takes
into account the coordination of expectations at the individual level. Consistent with our
estimated sensitivity of expectations to public information at and away from the ELB, they
provide evidence that the increase in the federal funds rate that ended the first ELB period
enhanced the anchoring of long-run inflation expectations in the SPF.
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3 A model of long-run inflation expectations

The model consists of a panel of forecasters aiming to predict long-run inflation while
understanding that inflation is generated by a time-varying-parameter, trend-cycle time-series
model. Forecasters observe inflation (the inflation signal) and receive two additional signals
about trend inflation—a coordinating signal and an idiosyncratic signal—which they use to
form their long-run expectations. Forecasters update their expectations about trend inflation
by minimizing the variance of their estimates of the underlying state variables that govern
the dynamics of inflation. Since our model is linear and its shocks are normally distributed,
it is optimal for forecasters to use the Kalman filter to update their expectations.

We consider two alternative assumptions about the cognitive abilities of forecasters. In
one case, we assume that forecasters understand all the parameters of the model, which we
refer to as the rational model. In the other case, we assume that forecasters may misperceive
key parameters of the signals, allowing for cognitive biases to arise. We refer to this case as
the behavioral model. We will explore more types of deviations from rationality in subsequent
analysis (Section 6).

3.1 The inflation generating process

Inflation, πt, is generated by the following time-varying-parameter trend-cycle model:

πt = π̄t + ψt + σωωt; (1)

π̄t = π̄t−1 + σλ,tλt; (2)

ψt = ϕtψt−1 + ση,tηt. (3)

Inflation is decomposed into a trend component (π̄t), a cyclical component (ψt), and an
i.i.d. component (ωt). Trend inflation reflects the long-run drivers of inflation. The cyclical
component captures persistent variations of inflation around its long-term trend, for example,
due to Phillips curve dynamics. The i.i.d. component captures high-frequency variation in
inflation that does not have persistent effects, for example, due to food and energy prices.
The random variables ωt, λt, and ηt are i.i.d. standard normal, and σω, σλ,t, and ση,t are
strictly positive. The variances of the innovations to the trend and cycle components follow
log random walk processes:

ln(σ2
λ,t) = ln(σ2

λ,t−1) + γλελ,t, (4)

ln(σ2
η,t) = ln(σ2

η,t−1) + γηεη,t; (5)
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where εη,t and ελ,t are i.i.d. standard normal and γλ and γη are both strictly positive. The
cyclical component’s auto-regressive parameter is also stochastic and is modeled similarly:

ϕt = ϕt−1 + γϕεϕ,t, (6)

where the εϕ,t are drawn from truncated standard normal distributions with thresholds
−ϕt−1/γϕ and (1 − ϕt−1)/γϕ so that ϕt is stationary.

Our trend-cycle model is univariate. Stock and Watson (2016) show that univariate
estimates of the trend in core inflation are nearly as accurate as multivariate estimates.8

Employing a multivariate trend-cycle model would significantly increase the already substantial
computational burden of solving the forecasters’ signal extraction problem. In Appendix
C, Table 3, we provide evidence on the forecast performance of the above model and in
particular, highlight the importance of allowing for time-varying parameters and persistence
in the cyclical component.

3.2 Forecasters’ information

Forecasters base their long-run inflation forecasts on limited information about the three
drivers of inflation (π̄t, ψt, and ωt). In both the rational and behavioral models, they are
assumed to know the trend-cycle model described by equations (1)–(6) and the values of
its parameters in every period. We will relax this assumption later in the context of the
rational model. Additionally, forecasters observe inflation, a coordinating signal, and an
idiosyncratic signal, which shape their beliefs about long-run inflation. Inflation is a public
signal observed by all the forecasters, implying that today’s long-run inflation expectations are
conditional on current and past inflation. We interpret the coordinating signal as representing
forward-looking public information, potentially due to policymakers’ communications, widely
followed media, and any events unrelated to past inflation that happen to align forecasters’
beliefs about the central bank’s commitment to price stability.9 In contrast, we interpret the
idiosyncratic signals as forward-looking private information held by forecasters. Examples
include forecasters’ personal judgment about the central bank’s credibility, their interpretation
of factors driving inflation, and their individual experiences with past inflation episodes.10

8Crump et al. (2023) report that a multivariate trend-cycle model with time-varying parameters offers
modest improvements over a univariate model for forecasting inflation at long horizons.

9Nimark (2014), Chahrour, Nimark and Pitschner (2021) examine how the media industry selects signals
observed by economic agents and the implications of this selection for business cycles.

10Rich and Tracy (2017) find that forecasters tend to revise their forecasts toward the median forecast of
the previous period in the European Central Bank’s Survey of Professional Forecasts. Fuhrer (2018) finds
similar evidence for short-run macroeconomic expectations of professional forecasters, firms, and households,
both in the United States and in the euro area. While this is true for short-run expectations, it’s not clear
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The coordinating signals are perfectly correlated across forecasters and play the critical
role of coordinating their expectations about trend inflation. The coordinating signal received
by forecaster i in period t, s̃t(i), reads:

s̃t(i) = π̄t + α(i)vc,t; (7)

vc,t = ρcvc,t−1 + σc,tνc,t, (8)

where α(i) and σc,t are strictly positive and vc,t represents the realized noise in the coordinating
signal with volatility of coordinating innovations σc,t. All forecasters’ coordinating signals are
affected by the same realizations of noise. The noise process is autoregressive with standard
normal innovations, νc,t. The variance of the innovations is time-varying and follows a random
walk in logs: ln σ2

c,t = ln σ2
c,t−1 + γcϵc,t, with standard normal innovations and with γc strictly

positive.11

The volatility of coordinating innovations, σc,t, is inversely related to the average precision
of the coordinating signals across forecasters. In particular, a larger value of σc,t makes the
coordinating signal less precise. All else being equal, lower precision implies lower sensitivity
of all forecasters’ expectations to the coordinating signal and can, therefore, be a measure of
forecasters’ average sensitivity to the coordinating signals.12

The parameter α(i) captures heterogeneity in forecasters’ sensitivity to coordinating signals.
Forecasters with larger α(i) receive a relatively less precise coordinating signal, making their
expectations less responsive to them. In the special case where α(i) is identical across all
forecasters, the coordinating signals, s̃t(i), effectively become public signals. Furthermore,
since α(i) is strictly positive, coordinating signals are perfectly correlated across forecasters.

The idiosyncratic signals represent private information, including a forecaster’s subjective
judgment about trend inflation. Formally, the idiosyncratic signal received by forecaster i in
period t, st(i), reads:

st(i) = π̄t + vt(i); (9)

vt(i) = ρ(i)vt−1(i) + σν(i)νt(i), (10)

whether the same should hold for our setting of long-run expectations. If this were the case, our model would
explain these revisions using the coordinating and idiosyncratic signals, depending on whether these revisions
contribute to making expectations more coordinated or more dispersed.

11The stochastic process governing the volatility σc,t is irrelevant to the solution of the forecasters’ signal
extraction problem, as they understand it will always be known at the time they form their expectations.
However, this process is relevant for the estimation of the model parameters, as it influences the model’s
likelihood function.

12By sensitivity of expectations, we mean the absolute value of the response of expectations to a unit
change in the signal.
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where vt(i) denotes the realized noise in the idiosyncratic signal, which follows a forecaster-
specific auto-regressive process with persistence ρ(i) and standard normal innovations that
are assumed to be i.i.d. and orthogonal across forecasters. The volatility of idiosyncratic
innovations is forecaster-specific and is denoted by σν(i).

Idiosyncratic noise has two key features. The volatility of idiosyncratic innovations,
σν(i), is inversely related to the accuracy of the private information held by each forecaster.
A relatively high volatility implies that a forecaster receives relatively imprecise private
information regarding trend inflation. All else being equal, a larger volatility lowers the
sensitivity of a forecaster’s expectations to idiosyncratic noise, vt(i). The second key feature
is the serial correlation of idiosyncratic noise, vt(i), allowing the model to account for
persistent effects of individual judgment on forecasts, including, but not limited to, enduring
disagreement over the inflation generating process among professional forecasters.

Since agents observe inflation and know the trend-cycle model’s parameters, they can
determine the real-time (one-sided) estimate of trend inflation. As we will discuss, we,
as econometricians, estimate trend inflation using the trend-cycle model with a two-sided
(smoothed) approach, that is, by conditioning the estimation of trend inflation on the full
sample of inflation observations. This feature of our empirical analysis has two important
implications. First, forecasters in the model focus mostly on learning the forward-looking
component of estimated trend inflation, as they already know past realizations of inflation
and, therefore, the backward-looking drivers of trend inflation that we estimate in the data.
Second, the coordinating and idiosyncratic signals jointly capture forward-looking information
about trend inflation that is not yet reflected in the most recent inflation readings, which are
already conveyed by the inflation signal.

3.3 Forecasters’ cognitive abilities

We consider two alternative assumptions regarding forecasters’ cognitive ability. In one
version of the model—the rational model—we assume that agents are rational, meaning that
they are capable of correctly assessing the true parameter values of the signal processes: the
persistence of the coordinating and idiosyncratic noise (ρc and ρ(i)), the relative volatility of
the coordinating signal (α(i)), and the volatility of the idiosyncratic innovations (σν(i)).

We also consider a version of the model—the behavioral model—in which forecasters
are less capable of understanding the key parameters of their signal extraction problem.
Specifically, forecasters may misperceive the parameters of the signal processes. We denote
the misperceived parameters with a star superscript. A forecaster may misperceive the
persistence (ρ∗

c(i) ̸= ρc) and the relative volatility (α∗(i) ̸= α(i)) of the coordinating signals,
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as well as the persistence (ρ∗(i) ̸= ρ(i)) and the innovation volatility (σ∗
ν(i) ̸= σν(i)) of their

idiosyncratic signals.13 Importantly, the degree of misperception can vary across forecasters
and parameters. In both versions of our model, agents are assumed to know the parameters
of the trend-cycle model. Later in the paper, we relax this assumption to show that this
deviation from rationality does not resolve the two critical sources of misspecification in the
rational model that we find.

4 Estimation

The rational and behavioral models are estimated using inflation data and our panel data on
long-run inflation expectations, using a two-step estimation strategy. The rational model is
nested within the behavioral model, representing a special case where ρ∗

c(i) = ρc, α∗(i) = α(i),
ρ∗(i) = ρ(i), and σ∗

ν(i) = σν(i). For the behavioral model, we do not impose specific cognitive
biases. Instead, the estimation procedure identifies the biases required to improve the model’s
fit relative to the rational model.

4.1 The two-step estimation strategy

In the first step, we estimate the time-varying parameters of the trend-cycle model (σω, γη, γλ,
and γϕ), summarized by equations (1)–(6), using our inflation data. This is achieved through
Bayesian state-space methods. Additionally, we employ Markov chain Monte Carlo techniques
to obtain smoothed estimates of the trend, cycle, and i.i.d. components of inflation.

In the second step, we estimate the parameters of the rational and behavioral models
described in section 3. This estimation uses our panel of long-run inflation expectations,
inflation, and the smoothed (two-sided) estimates of the trend and cyclical component of
inflation obtained in the first step. In both models, forecasters are assumed to use parameter
values for the trend-cycle model equal to their posterior means estimated in the first step,
which are therefore not re-estimated in the second step.

More specifically, in the second step we estimate a state-space model that combines
equations (1) to (6) with N sets of equations corresponding to the updating of the N

forecasters’ expectations about the state via the Kalman filter. These equations are the
solution to the signal extraction problems solved by the forecasters.14 As the trend-cycle model
implies that the expected value of inflation at long horizons equals the trend, π̄t, we equate

13Since the average precision of the coordinating signals—as captured by 1/σc,t—is perfectly observed in
this specification of the behavioral model, misperception regarding the parameter α(i) effectively captures
misperception of the precision of the coordinating signal.

14Appendix A.1 describes the state-space model we use for the panel estimation in detail.
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forecasters’ long-run inflation expectations at a point in time with their contemporaneous
estimate of π̄t. The second-step estimation yields estimates of the signal process (ρc, σc,t,
α(i), ρ(i), and σν(i) , i = 1, 2, . . . , N). When we estimate the behavioral model, the second-
step estimation also returns the parameters capturing the perceived relative volatility of
the coordinating signals (α∗(i) , i = 1, 2, . . . , N), the perceived volatility of idiosyncratic
innovations (σ∗

ν(i) , i = 1, 2, . . . , N), and the perceived noise persistences (ρ∗
c(i) and ρ∗(i) , i =

1, 2, . . . , N).
In the second step, we, as econometricians, cannot observe the realization of the coordinat-

ing and idiosyncratic signals. However, jointly observing the panel of individual expectations
and the dynamics of trend inflation estimated in the first step allows for the identification of
the precision of the coordinating and idiosyncratic signals or their perceived precision in the
case of the behavioral model. To illustrate, if the coordinating and idiosyncratic noise are, or
are perceived to be, highly volatile, the two non-inflation signals convey little information.
This occurs when the models can explain the panel of long-run inflation expectations almost
entirely with the behavior of inflation, that is, the inflation signal.

The rationale for the two-step approach The trend and cyclical components of inflation
are estimated in the first step by conditioning on inflation observed over the entire sample
period (1959Q1–2023Q2). The long sample is a critical feature, as we treat the trend estimated
in the first step as the “true” trend forecasters track when solving their signal extraction
problem. While obviously no one knows the true trend inflation with absolute certainty, we
consider the first step to deliver the best available estimate of trend inflation as it comes from
a state-of-the-art trend-cycle model conditioning on a very long sample period. In Section 6,
we use alternative approaches to estimate the “true” trend in order to assess the robustness
of our findings.

We want to evaluate the relative empirical performance of the rational model and the
behavioral model to gain insights into potential deviations from rationality that may influence
professional forecasters’ long-run inflation expectations. In comparing these two models,
the three latent components of inflation and the parameters of the trend-cycle model are
left unchanged. This approach ensures that the comparison is based solely on the empirical
performance of the two models in fitting the data. Such a comparison would not be feasible
if the parameters of the trend-cycle model and the signal-extraction problem were estimated
jointly.

A further advantage of our two-step estimation strategy is that trend inflation is estimated
solely based on the actual dynamics of inflation. This approach ensures that the estimated
trend inflation is not influenced by the need to explain the joint dynamics of forecasters’
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inflation expectations. We consider this a desirable feature of our estimation strategy for at
least two reasons. First, it eliminates the possibility of a circular argument. The estimated
trend component, π̄t, represents the variable forecasters aim to track when forming their
expectations in our model. Therefore, it is conceptually desirable to avoid contaminating
the estimation of this trend component with information derived from the panel of observed
expectations of professional forecasters. Second, the two-step estimation strategy is econo-
metrically advantageous, as it facilitates the identification of the sensitivity of expectations
to the coordinating and idiosyncratic signals, which, as noted earlier, cannot be directly
observed by the econometrician.

4.2 Data

Our panel dataset is expectations of long-run headline CPI from the SPF, which spans the
sample 1991Q3-2023Q2. We use these data because they are the longest available time series
of professional forecasters’ long-run expectations. They also have the benefit of never being
revised. Quarterly headline CPI inflation is from the U.S. Bureau of Labor Statistics and
spans the sample 1959Q1–2023Q2.

Since we equate forecasters’ long-run inflation expectations in a quarter with their estimate
of the contemporaneous trend component, ideally we would use data on long-run expectations
that excludes near term forecasts that are mostly driven by the cyclical and high-frequency
components of inflation. The measure that most closely matches our ideal is the 5-Year, 5-Year
forward inflation expectations, which is generally not affected by cyclical and high-frequency
shocks to inflation. However, these data only become available in 2011 in the SPF.15 To
maximize the length of our sample, we splice these data to forecasts of CPI inflation over the
next ten years that go back to 1991Q3. When shocks to inflation are small and transitory,
as they were from 2000 to before the pandemic, ten-year average expectations are a good
approximation to our ideal measure. We use the 5-Year, 5-Year forward inflation expectations
in the later part of the sample that includes the 2021-2022 surge of inflation.16

To have a sufficient number of observations to measure the variance and serial correlation
of the idiosyncratic noise, we consider only those forecasters who submitted at least 32
forecasts in the available sample period. This leaves us with an unbalanced panel of 51

15In 2011, the survey began including a check to verify that forecasters correctly understand their 5-year,
5-year forward inflation forecast, which is a derived variable. The Blue Chip Economic Forecast has a longer
semiannual time series for six to ten years average inflation expectations than the SPF. However, individual
long-run forecasts are not reported.

16The forecasters in the SPF do not observe inflation in the quarter they are surveyed because they submit
their forecasts in the second month of each quarter. We address this by lagging SPF forecasts by one quarter
when we estimate the model. For example, we measure long-run expectations in 2018Q2 using forecasts from
the survey that was conducted in February 2018.
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Figure 1: Inflation, trend inflation, and long-run inflation expectations. Left panel: U.S. quarterly
headline CPI inflation rate (blue solid line) and its trend component (red dotted line) estimated using the
trend-cycle model conditional on the entire data set (1959Q1-2023Q2). The shaded gray area indicates the
sample period for the second-step panel estimation (1991Q3-2023Q2). The right panel: Trend component of
U.S. quarterly headline CPI inflation rate estimated using the trend-cycle model (red dotted line) and the
mean (black solid line), the interquartile range (the dark blue bands), and the min-max range (the light blue
bands) of the distribution of SPF long-run CPI inflation expectations, constructed as explained in Section 4.2.

forecasters. Note that in some cases, there are gaps in the time series of forecasts for individual
forecasters.17 In Appendix B, we show that average and median long-run expectations in our
sample of forecasters correspond closely to their values in the complete SPF sample.

The estimated trend-cycle model yields the inflation trend that is data to the second step
of the estimation of the rational and behavioral models.18 The left chart of Figure 1 shows
the time series of CPI inflation and our smoothed estimate of the inflation trend over the
full estimation sample. The shaded area shows the sample period we use to estimate the
panel model. The right chart shows the mean, interquantile range, and the min-max range
of the long-run inflation expectations from the SPF panel, along with the inflation trend
in red. The shaded area in the this chart illustrates the data the rational and behavioral
models are asked to explain in the second step of the estimation. Average expectations are
not used in the estimation, but we study them in the estimated model. In the early part
of the sample, average expectations lag behind the decline in the trend. Between 1999 and
2008, the two series are roughly aligned and stable at around 2.5 percent. This alignment
is particularly striking, given that the estimation of the trend is not conditioned on SPF
expectations. Although the models used by professional forecasters to predict long-run

17The Philadelphia Fed must decide whether a forecaster ID should follow a forecaster when they
change employer. Information on the Philadelphia Fed’s website indicates that such decisions are
based on judgments as to whether the forecasts represent the firm’s or the individual’s beliefs. See
http://www.phil.frb.org/econ/spf/Caveat.pdf.

18The estimated parameters of the trend-cycle model are shown in Appendix C.
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inflation are unknown, this finding is reassuring as it suggests that our estimated trend-cycle
model aligns closely with the beliefs of an average forecaster during a period of relative
macroeconomic stability. Around the beginning of the Great Recession, the trend begins a
long downward drift to its nadir of 1.7 percent in 2015, and ends the sample near 3 percent.
Our model will have to explain why average inflation expectations evolve so slowly in the
face of these pronounced swings in trend inflation over the past 15 years.

Notice that the distribution of expectations expands quite considerably during the first
period the federal funds rate was at its ELB, 2008Q4–2015Q4.19 More generally, the large and
time-varying cross-sectional dispersion in the individual SPF long-run inflation expectations
(the blue ranges in the right chart of Figure 1) may also represent a challenge for the rational
and behavioral models.

5 Estimated models and deviations from rationality

We show the prior moments of the models’ parameters in Appendix D. The priors are
fairly uninformative, reflecting our belief that the SPF data should be primarily driving
the estimation. The estimation drives the auto-correlation parameter of the noise in the
coordinating signal, ρc, to a value close to one in both models. In the estimated rational model,
this process is essentially a random walk, whereas in the behavioral model this persistence is
somewhat lower (0.96).

In Figure 2, we show the distributions of the posterior modes of the forecaster-specific
parameters that govern the signal structure of the model. The left column shows the
distribution of estimated parameters across forecasters for the rational model. The right
column reports the distributions for the true (and unknown to the forecasters) value of the
same parameters in the behavioral model. The distributions are broadly similar across the
two models for the relative volatility of the coordinating signals and the persistence of the
idiosyncratic noise. In the behavioral case, there are some large outliers compared to the
rational model for the volatility of the idiosyncratic innovations.

These charts illustrate the significant heterogeneity of the estimated parameters of the
signal structure. For the rational model, the wide distributions suggest that the degree
of sensitivity of forecasters’ expectations to the signals is quite heterogeneous. To draw
conclusions on the sensitivity of expectations in the behavioral model, we need first to examine

19The shrinking range during the second ELB period and toward the end of the sample period, particularly
the min-max range, is an artifact of nearing the sample’s end. Specifically, as the sample period concludes, the
number of new forecasters entering the survey and meeting the 32-observation cutoff is insufficient to offset
the number of dropouts. A chart without the cutoff is provided in Appendix B. This shows no significant
shrinkage in the min-max range toward the end of the sample period.
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Figure 2: Estimated model parameters. Posterior mode for the rational (left charts) and behavioral
(right charts) models’ forecaster-specific parameters: the relative volatility of each forecaster’s coordinating
signal α(i) (first row), the persistence of each forecaster’s idiosyncratic noise, ρ(i), (second row), and the
volatility of each forecaster’s idiosyncratic innovations, σν(i)(third row). Bars indicate number of forecasters.

the distributions of the estimated parameters that control the perceived volatility of the
signals’ innovations and persistence of the noise. We show the perceived parameters in Figure
3. Specifically, we present the ratio of the perceived parameters (ρ∗

c(i), α∗(i), ρ∗(i), and σ∗
ν(i))

to the their true values (ρc, α(i), ρ(i), and σν(i)). The vertical red line marks the unity line.
Parameters estimated close to this line should be interpreted as reflecting small cognitive
bias by the forecaster.

One of the most remarkable findings from Figure 3 concerns the perceived persistence of
coordinating noise: All but one forecaster underestimates ρc. This systematic deviation from
rationality leads to a persistent expectations bias that results in highly persistent forecast
errors across almost all forecasters. This is illustrated in the left chart of Figure 4, which
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Figure 3: Deviations from rationality. Ratio of the posterior mode of the behavioral parameters (ρ∗
c(i),

α∗(i), ρ∗(i), σ∗
ν(i)) to the posterior mode of the true value of the corresponding structural parameters (ρc,

α(i), ρ(i), and σν(i)). The red vertical line denotes the line of rationality where the ratio is one and the
perceived parameters coincide with their true value.

shows the response of long-run inflation expectations to a one-standard-deviation innovation
to the coordinating noise, νc,t. The substantial persistence in forecast error in the behavioral
model is evident from the difference between the green line (the median response of long-run
expectations) and the red dashed line, which is the response of trend inflation that overlaps
the zero line because the trend is not affected by the innovations.20

To understand why forecast errors are so persistent in the behavioral model, recall that
in this model forecasters mistakenly believe that the noise can influence the coordinating
signal only temporarily (ρ∗

c(i) < ρc for all but one forecaster). However, the noise is actually
very persistent (ρc = 0.96). Over time, forecasters begin to infer that only a change in trend
inflation can account for the persistent variation in the coordinating signal they observe.
Consequently, an innovation to the coordinating noise, νc,t, leads to a long-lasting adjustment

20In both the left and right charts of Figure 4, the impulse responses are computed for every period in the
sample and then averaged across periods to account for the time-varying parameters of the trend-cycle model
and the volatility of the innovations in the coordinating signals, σc,t.
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Figure 4: Propagation of noise innovations to expectations. Impulse response functions of long-run
inflation expectations of every forecasters to a one-standard-deviation noise innovation to the coordinating
signal (left chart) and to every idiosyncratic signal (right chart). Responses in the rational model are denoted
in blue and those in the behavioral model are denoted in green. The solid lines denote the median response
across forecasters and the shaded areas denote the 90 percent range of responses across forecasts. The red
dashed line shows the true response of trend inflation. The impulse response functions in both graphs are
computed in every period of the sample (1991Q3-2023Q2) and then averaged across sample periods.

in forecasters’ expectations.
The behavioral model is clearly capable of capturing autonomous, long-lasting deviations

of long-run inflation expectations from trend inflation. This feature enables the model
to explain the persistent gaps between inflation expectations and trend inflation for most
forecasters over large parts of the sample, as shown in the right chart of Figure 1. In contrast,
the rational model does not have a mechanism allowing it to account for the persistent gaps
in the data due to its inability to generate a persistent expectations bias.

In the left chart of Figure 4, the responses of individual expectations to innovations to the
coordinating noise, νc,t, are more dispersed and exhibit greater persistence in the behavioral
model compared to the rational model. This is indicated by the wider 90 percent range of
responses for the behavioral model (green shaded area) compared to the rational model (blue
shaded area). This feature helps the behavioral model account for the large heterogeneity in
the SPF data.

Another remarkable finding is shown in the lower right chart of Figure 3. In the behavioral
model, almost every forecaster mistakenly believes that the volatility of their idiosyncratic
innovation is lower than it actually is; that is σ∗

ν(i) < σν(i) for almost every forecaster i. This
misperception implies the forecasters believe their idiosyncratic signal is more precise than it
actually is. In other words, forecasters exhibit overconfidence in private information.

The implications of this are shown in the right chart of Figure 4, which shows forecasters’
impulse responses to a one-standard-deviation idiosyncratic innovation, νt(i). In this chart,
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the green shaded area is much wider than the blue one at all horizons. Overconfidence leads
expectations to be more sensitive to idiosyncratic signals compared to the rational model. As
a result, smaller in-sample realizations of innovations to the idiosyncratic noise are needed
to explain the large and time-varying heterogeneity of forecasts. As we will show below,
this feature allows the behavioral model to overcome a key source of misspecification that
plagues the rational model. The wider green shaded areas in the two charts of Figure 4
highlight another significant property of the behavioral model: coordinating and idiosyncratic
innovations cause some forecasters to disagree with their peers for extended periods.

Finally, the two off-diagonal charts in Figure 3 show that, in the behavioral model,
most forecasters tend to overestimate the volatility of the coordinating signals, as evidenced
by α∗(i) > α(i) for the majority of forecasters, so they believe the coordinating signal is
less precise than it actually is. In contrast, the share of forecasters who overestimate the
persistence of the idiosyncratic noise (ρ∗(i) > ρ(i)) is more evenly balanced.

6 Empirical evaluation of the models

To evaluate the empirical performance of the rational and behavioral models, we examine
the in-sample properties of the estimated coordinating innovations (νc,t) and idiosyncratic
innovations (νt(i)). The upper charts of Figure 5 present the autocorrelation functions of the
estimated innovations to the coordinating noise in the rational model (left) and the behavioral
model (right). In the rational model, the assumed i.i.d. innovations to the coordinating
noise exhibit significant in-sample serial correlation. This arises because the rational model
requires persistent innovations to the coordinating signals to align with persistent deviations
of expectations from trend inflation shown in the right chart of Figure 1. As shown in the
left chart of Figure 4, the impulse response to changes in the coordinating signal in the
rational model is insufficiently persistent to account for this phenomenon.21 Consequently,
the estimated rational model can only explain the persistent gap between average inflation
expectations and trend inflation by violating the white-noise assumption for innovations to
the coordinating signals. This is a clear indication that the rational model is misspecified.

The upper right chart of Figure 5 shows the autocorrelation function of the coordinating
innovations in the behavioral model. These innovations are much closer to white noise
because, in this model, forecasters are influenced by a persistent expectations bias when
forming their long-run inflation expectations. This bias enables the coordinating signals to
generate highly persistent forecast errors, as illustrated by the green line in the left chart
of Figure 4. Consequently, the behavioral model does not need to violate the white noise

21The impulse responses to all four shocks of the models are shown in Appendix E.
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Figure 5: Assessing misspecification in the two models. The upper charts show the autocorrelogram
of the estimated in-sample noise innovations to the coordinating signals. The horizontal red lines are the
95-percent confidence bands for statistical significance. The lower charts show the distribution of the estimated
in-sample noise innovations to idiosyncratic signals over time and across forecasters. The left panels refer to
the rational model. The right panels refer to the behavioral model.

assumption for the in-sample realizations of the coordinating innovations to account for the
persistent gap between average long-run inflation expectations and the trend component of
inflation.

The idiosyncratic innovations, νt(i), are drawn from a standard normal distribution in
both models. The lower charts of Figure 5 display the distribution of the estimated in-sample
realizations of the idiosyncratic innovations for all forecasters. In the rational model (left
chart), the estimated idiosyncratic innovations exhibit excessive volatility, skewness, and
kurtosis. In contrast, the idiosyncratic innovations estimated in the behavioral model (right
chart) align much more closely with a standard normal distribution. The mean is near zero,
the standard deviation is close to unity and there is virtually zero skewness. Moreover, the
behavioral assumptions reduce the kurtosis of the distribution from 8 to 4, demonstrating a
much closer fit to the assumed Gaussian properties.

The excess volatility, skewness, and kurtosis of the in-sample realizations of the id-
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iosyncratic innovations in the rational model highlight its struggle to account for the large
cross-sectional dispersion observed in the SPF. This failure stems from the rigid link imposed
by the rationality assumption between the standard deviation of the idiosyncratic innovations
and the sensitivity of expectations to these innovations. On the one hand, fitting the large
heterogeneity in the SPF requires a high standard deviation of idiosyncratic innovations.
On the other hand, rational forecasters’ expectations become less sensitive to idiosyncratic
signals as the standard deviation of these innovations increases. However, reduced sensitivity
to these signals causes expectations to become less dispersed, creating a tension. This tension
underpins the misspecification of the rational model.

The behavioral model performs better by relaxing the tension between the volatility of the
idiosyncratic innovations and the sensitivity of forecasters’ expectations to idiosyncratic signals.
Due to overconfidence (σ∗

ν(i) < σν(i) for almost all forecasters i), individual expectations
in the behavioral model are generally more responsive to idiosyncratic shocks than in the
rational model, as reflected in the size of the shaded area in green compared to the blue in
the right chart of Figure 4. Consequently, the behavioral model requires smaller in-sample
realizations of the idiosyncratic innovations to account for the large heterogeneity observed
in the SPF.

Robustness So far, we have assumed that forecasters have perfect knowledge of the
parameters of the trend-cycle model. While this assumption is consistent with the assumption
of rationality, it is undoubtedly a strong and unrealistic one. In practice, forecasters must
simultaneously forecast trend inflation and estimate the parameters of their inflation model in
real time. Consequently, the only parameters available to forecasters are those estimated using
data up to the point of their forecast. We find that this alternative model, where forecasters
solve their signal extraction problem each period based on real-time parameter estimates of
the trend-cycle model, suffers from the same type of misspecification that undermines the
rational model.22

We also explore another deviation from rationality: Forecasters using an incorrect model
to predict trend inflation. Specifically, we assume that the “true” trend inflation is calculated
using a centered 5-year moving average. However, forecasters mistakenly believe that the
“true” model is the trend-cycle model with time-varying parameters, as specified in equations
(1) to (6). When we estimate this behavioral model, we do not see substantial improvement
in addressing the misspecification that affects the rational model. Similar conclusions are
reached when the “true” trend of inflation is estimated using a 10-year centered moving
average.

22Detailed results are presented in Figure 14.
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The likely reason for this failure is that moving averages are generally more responsive to
cyclical fluctuations in inflation than the trend estimated using a model with time-varying
parameters and heteroskedasticity. As a result, the gap between a moving average of inflation
and the SPF inflation expectations becomes even larger than when trend inflation is estimated
using our trend-cycle model. This, in turn, exacerbates the in-sample serial correlation of the
innovations to the coordinating signals, making the issue even more pronounced. Detailed
results can be found in Appendix E.

7 Forecasters’ overreaction and persistent forecast errors

In this section, we delve deeper into the reasons behind the failure of the rational expectations
model and further explore how the two cognitive biases significantly enhance the model’s
fit. Our analysis is based on examining the properties of forecast errors using the regression
framework introduced by Coibion and Gorodnichenko (2015) and applied to individual
forecaster data by Bordalo et al. (2020). Originally designed to test the validity of the FIRE
assumption, we adapt this framework to serve as a new benchmark for evaluating the ability
of the rational and behavioral models to explain key properties of forecast errors in the
SPF data. This framework also allows us to compare how these properties differ between
short-run and long-run inflation expectations, thereby motivating the development of a model
specifically tailored to long-run expectations.

We estimate the following pooled regression:

π̄t − Ei
t π̄t = βp

0 + βp
1

(
Ei

t π̄t − Ei
t−1π̄t

)
+ εi

t, (11)

where Ei
t π̄t denotes the beliefs of forecaster i about trend inflation, which in our estimation

is equated with long-run inflation expectations. The left-hand side represents the observed
forecast error of a professional forecaster i in assessing trend inflation, π̄t, in period t, while the
right-hand side captures the forecaster’s revision between periods t− 1 and t. A parameter βp

1

significantly less than zero indicates overreaction, suggesting that the forecaster’s revision of
expectations in response to new signals exceeds the actual changes in trend inflation, resulting
in a negative forecast error. The analysis covers our baseline sample period, spanning 1991Q3
to 2023Q2.

Overreaction in the data Panel I of Table 1 presents the results for both long-run and
short-run inflation expectations. Forecast errors in predicting long-run inflation are computed
using two approaches: first, as in equation (11), based on trend inflation used to estimate the
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rational and behavioral models (first row of Table 1); and second, using the actual realizations
of inflation (second row).23 The latter approach requires shortening the sample period, as
computing forecast errors for 5-Year, 5-Year forward inflation expectations requires observing
inflation over the subsequent 10 years. Despite this limitation, the results in the table reveal
that both approaches yield remarkably similar estimates of overreaction in long-run inflation
expectations. This consistency mitigates any concerns regarding the use of a trend-cycle
model to define professional forecasters’ forecast errors in our analysis.

In the third row of the table, short-term expectations are defined as in Bordalo et al.
(2020).24 Notably, overreaction is statistically significant only for long-run inflation expecta-
tions.25 The contrasting properties of short-term and long-run inflation expectations once
again underscore the need for a model designed specifically to analyze long-run inflation
expectations.

Forecasters’ overreaction and overconfidence. Table 1 also includes estimates of
overreaction based on data simulated using the estimated rational and behavioral models. We
simulate each model for 128 periods with 51 forecasters (matching the number of observations
in the sample used to estimate the models) and repeat the process 1,000 times. To ensure
consistency with the data used in our model estimation, which exhibits a persistent negative
forecast error, we retain only those simulations that produce a negative average forecast error.
After applying this selection criterion, approximately 500 simulations remain for each case
considered.

In Panel II of the table, we show the parameters in equation (11), estimated using
simulated data from the rational model. When the model is simulated by drawing innovations
from the true Gaussian distribution, the rational model does not reach the magnitude of
overreaction observed in the data (fourth row of the table). Overreaction is a common
rejection of the FIRE hypothesis, indicating that a model with agents who are jointly rational

23This second type of forecast error is calculated consistently with how long-run inflation expectations
are computed in every period of the sample. For instance, it involves averaging realized inflation rates over
the subsequent 40 quarters when 10-year average inflation expectations are used as a proxy for long-run
inflation expectations. This approach ensures consistency in the definition and computation of forecast errors
throughout the sample period.

24Specifically, forecast errors and revisions are defined with a horizon of three quarters, as follows:

πt+3 − Ei
tπt+3 = βp

0 + βp
1

(
Ei

tπt+3 − Ei
t−1πt+3

)
+ εi

t,

where πt+3 denotes the annual growth rate of CPI from quarter t − 1 to quarter t + 3, with t being the survey
quarter.

25While Bordalo et al. (2020) find strong evidence of overreaction in SPF short-term expectations for
most macroeconomic variables, they report insignificant results for CPI inflation and the GDP deflator. Our
estimation, based on a different sample period, confirms their findings.
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Table 1: Regressions of forecast errors on forecast revisions

βp
0 SE βp

1 SE R2

I. Data
FE based on estimated trend -0.14 0.05 -0.48 0.03 0.07
FE based on realized future inflation -0.31 0.09 -0.48 0.06 0.03
SPF short-run inflation expectations 0.00 0.00 0.11 0.18 0.00

II. Models
Rational model -0.02 0.01 -0.39 0.03 0.07
Behavioral model -0.12 0.03 -0.47 0.02 0.11
Behavioral model - Only overconfidence -0.04 0.02 -0.47 0.02 0.08

Notes: Forecast Errors Analysis. Estimation results of the regression in equation (11). In Panel I, we use
inflation expectations from the SPF and in Panel II we use the model-simulated beliefs about trend inflation
which according to our model are equal to long-run inflation expectations. In the first row, forecast errors are
computed using the trend estimated from the trend-cycle model, while the second row uses realized future
inflation, with the sample restricted to end in 2013Q2. Specifically, instead of the trend, π̄t, we define the
long-run inflation outcome as 5 years, 5 years forward, 1

20
∑40

h=21 πt+h. and ten year average inflation when
our preferred measure is not available. In the third row, we estimate the regression specified in Bordalo et al.
(2020), which is a variant of equation (11). In Panel II, we conduct 1,000 simulations for each model type.
The table reports the average estimates across all simulations that yield an average negative forecast error,
consistent with the estimated βp

0 in Panel I. The fourth row presents results from simulations of the rational
model using innovations drawn from the true shock distribution. The fifth row reports results from
simulations of the behavioral model with innovations drawn from the true shock distribution. In the sixth
row, we simulate an estimated behavioral model in which the only potential deviations from rationality is
overconfidence in private information—i.e. σ∗

ν(i) to be different from σν(i). For the remaining parameters we
do not allow any deviation from rationality. Standard errors are clustered by both forecaster and time, and
the reported R2 values correspond to the adjusted R2. The reported standard errors and R2 values
correspond to the average estimates across all simulations.

and fully informed cannot explain overreaction. However, our rational model with noisy
information goes two thirds of the way toward its estimated value.

The behavioral model successfully accounts for the magnitude of overreaction, yielding
an estimated βp

1 = −0.47, when innovations are simulated from the true distribution. This
case is shown in the penultimate row of the table. Overconfidence plays a pivotal role in
explaining overreaction in the SPF. Had we estimated a behavioral model with overconfidence
as the only cognitive bias, the model would still have successfully replicated the overreaction
observed in the data (last row). This finding demonstrates the importance of this cognitive
bias in explaining overreaction in long-run inflation expectations.

As shown in the right chart of Figure 4, a noise innovation to the idiosyncratic signal
leads to a negative forecast error, i.e. ∂Ei

t π̄t/∂νt(i) > ∂π̄t/∂νt(i) = 0. Consequently, the
rational model can generate overreaction. Nevertheless, overconfidence helps the behavioral
model to magnify these effects. This property is evident from the upper bound of individual
expectations’ responses to noise innovations in their idiosyncratic signals, as shown in the right
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panel of Figure 4. At the time the noise innovation occurs, this upper bound is significantly
higher than that observed in the case of the rational model.

Taking stock, overreaction emerges as a significant feature of the SPF long-run inflation
expectations, contributing to the pronounced heterogeneity observed therein, a characteristic
that the rational model fails to explain. A model equipped with a mechanism to generate
overreaction, such as the behavioral model with overconfidence, does not need to rely on
out-sized in-sample realizations of noise innovations to idiosyncratic signals to account for the
large heterogeneity in the data driven by expectations’ overreaction. Indeed, the distribution
of these in-sample realizations, illustrated in Figure 5, is remarkably close to a standard
normal distribution.

Negative forecast error bias and persistent expectation bias. The existence of a
statistically significant negative persistent bias in the SPF forecast errors is supported by the
estimation results displayed in the first row of Table 1. This bias is captured by the intercept
parameter βp

0 , where a negative (positive) value indicates an average negative (positive) bias
within our sample. This negative bias is also clearly visible in Figure 1, where the mean
of SPF expectations (the black solid line) lies above the estimated trend inflation (the red
dotted line) for most periods.

The baseline behavioral model, incorporating all cognitive biases, successfully accounts
for this persistent negative bias in forecast errors for long-run inflation. As shown in the
penultimate row of the table, the estimated βp

0 is statistically significant and closely replicates
the value estimated in the SPF data. While it perfectly accounts for the overreaction observed
in the data, the behavioral model with only overconfidence cannot generate persistently
biased forecast errors similar to those found in the SPF panel data – see the last row of Table
1.26 The rational model, the fourth row of the table, also fails to account for the negative
forecast error bias observed in the data.

Clearly, both the behavioral model with only overconfidence and the rational model lack
a mechanism to generate highly persistent forecast errors. In contrast, this mechanism is
present in the estimated behavioral model that incorporates all cognitive biases, particularly
the persistence expectations bias. This bias gives rise to the highly persistent forecast errors
illustrated by the green line in the left panel of Figure 4.

The negative average bias becomes even more pronounced when forecast errors are
calculated using realized future inflation rates, as highlighted in the second row of Table 1.
This larger bias arises from the necessity of excluding the most recent sample observations,

26Since we only consider simulations from models that imply negative average forecast errors, this parameter
is, by construction, estimated to be negative when model simulations are used.
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Figure 6: Time-varying volatility of coordinating innovations and sensitivities of expectations
to signals. The upper left chart shows the posterior mode of the time-varying volatility of coordinating
innovations (σc,t). The upper right chart shows the median and 90 percent range of the distribution of
sensitivities of individual expectations to inflation. The lower left chart shows the median and 90 percent
range of the distribution of sensitivities of individual expectations to the coordinating signals. The lower right
chart shows the median and 90 percent range of the distribution of sensitivities of individual expectations
to the idiosyncratic signals. Sensitivity is defined as the absolute value of the initial response of forecaster
i’s expectations to a unitary innovation to the signal. Technically, the sensitivity is derived from estimated
Kalman gain (based on the perceived parameters) which represents how much forecasters’ expectations about
long-run inflation respond to new information as captured by the three signals.

during which inflation surged sharply, leading to persistent positive forecast errors.27 Using
this model-free definition of forecast errors would further increase the negative bias, thereby
exacerbating the struggles the rational model faces in accounting for the SPF panel data.

8 The sensitivity of expectations to private and public information

Our estimated behavioral model of long-run inflation expectations (henceforth, the model)
allows us to measure the sensitivity of long-run inflation expectations to inflation, the

27Recall that the need to end our sample period in 2013 is the main reason why we define forecast errors
for long-run inflation expectations using the trend-cycle model introduced in Section 3.
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coordinating signal, and the idiosyncratic signals. Sensitivity is defined as the absolute value
of the initial response of forecaster i’s expectations to a unitary innovation to the signal.
Technically, the sensitivity is equal to the estimated Kalman gains from the signal extraction
problem solved by each forecaster (see Appendix A.1 for the derivation of the Kalman gains).
These Kalman gains capture how forecasters update their beliefs about long-run inflation in
response to new information as captured by the three signals. They are a function of the
estimated parameters from both the trend-cycle model and the signal extraction problem
and hence vary across forecasters and over time. Importantly, since the behavioral model
allows for misperception of the signal processes’ parameters, the estimated Kalman gains are
based on the perceived parameters. Therefore, these Kalman gains are subjective and not
necessarily equal to the optimal Kalman gains as in the case of the rational framework.

The upper-right chart of Figure 6 illustrates the sensitivity of forecasters’ long-run
inflation expectations to the inflation signal. Throughout the sample period, sensitivity
to the idiosyncratic signal remains remarkably low, suggesting that long-run expectations
were largely insulated from cyclical variations in inflation. This characteristic suggests that
inflation expectations, particularly after 2005, were largely anchored in the sense of Bernanke
(2007).28 Moreover, we observe minimal variation in sensitivity across forecasters, as indicated
by the narrow blue shaded area.

The lower-left chart of Figure 6 displays the sensitivity of long-run inflation expectations to
coordinating signals. This sensitivity is time-varying, with its value in each period depending
on the estimated values of all parameters in our model, including the time-varying parameters
of the trend-cycle model. A comparison of the two charts on the left of Figure 6 reveals that
this sensitivity is heavily influenced by the estimated evolution of the volatility of coordinating
innovations, σc,t, which is inversely related to the average precision of coordinating signals.

The sensitivity of SPF long-run inflation expectations to coordinating signals is much
larger and exhibits much greater variation across forecasters than the sensitivity to the
inflation signal. The sensitivity to coordinating signals is also larger than for the inflation
signal for most of the sample. Examining the dynamics of the median sensitivity (depicted by
the solid blue line), we find that in the early sample period, expectations became increasingly
responsive to the coordinating signal. From the late 1990s through to shortly before the onset
of the Great Recession (indicated by the red shaded area), the median sensitivity stabilizes
around 0.65. This value implies that a 25 basis point increase in the coordinating signal
shifts expectations by approximately 16 basis points on average.

28This finding aligns with empirical studies on the sensitivity of long-run inflation expectations to short-term
expectations, such as Barlevy, Fisher and Tysinger (2021), Carvalho, Eusepi, Moench and Preston (2023) and
references therein. Carvalho et al. (2023), Gáti (2023) propose structural models where long-run expectations
exhibit endogenous sensitivity to short-term inflation surprises.
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The model accounts for forecaster heterogeneity in part by allowing sensitivities to
coordinating signals to vary across individuals (α(i)), resulting in a wide range of sensitivities
(represented by the blue shaded area in the lower-left chart of Figure 6). The pre-ELB
period is characterized by a symmetric distribution of sensitivities. However, the onset of the
first ELB episode introduces persistent changes to this distribution. Specifically, we observe
notable and abrupt fluctuations in the skewness of the distribution.

At the onset of the Great Recession and the start of the first ELB period (the red shaded
area), the median sensitivity falls sharply and becomes much more volatile. A similar decline
occurs also in the second and most recent ELB episode (the green shaded area). When
the Federal Reserve lifts off the federal funds rate to end both ELB periods, we observe an
increase in the median sensitivity to coordinating signals.

The subdued sensitivity of expectations to the coordinating signals during the ELB
episodes suggests a crucial role for monetary policy in coordinating public beliefs and that
the interest rate tool is an important component of that. This role has been formalized by
the literature on dispersed information, dating back to Morris and Shin (2002) and Woodford
(2003), who showed that public signals serve as focal points for coordinating dispersed
expectations about the economy’s fundamentals.29

9 The anchoring-compatible inflation path

Now we show how our model can be used to evaluate whether the path of inflation com-
municated by policymakers is consistent with their objective of keeping long-run inflation
expectations anchored. Our analysis begins in the fourth quarter of 2022 when CPI inflation
significantly exceeded SPF long-run CPI inflation expectations. As illustrated in the right
chart of Figure 1, despite a substantial rise in trend inflation during 2021-2022, average
5-Year, 5-Year forward CPI inflation expectations remained remarkably stable.

We use our model to address the following question: what path of inflation over the next
three years would ensure that average long-run inflation expectations remain anchored, that
is unchanged, at the level observed at the end of 2022? We then compare this model-derived
path of inflation to the trajectory projected by the FOMC in December 2022. This exercise
allows us to assess whether the inflation path communicated by policymakers was aligned
with the goal of anchoring long-run expectations.

To compute this anchoring-compatible inflation path, we start by guessing a trajectory for
trend inflation. Given this guessed path and the assumption that average long-run inflation

29Other contributions to this literature include Mankiw and Reis (2002), Sims (2003), Reis (2006), Angeletos
and Pavan (2007), Nimark (2008), Maćkowiak and Wiederholt (2009), Lorenzoni (2009, 2010), Angeletos and
Lian (2018). Related empirical works include Melosi (2014), Falck, Hoffmann and Hürtgen (2021).
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Figure 7: Anchoring-compatible inflation path. The solid blue line denotes actual year-on-year headline
CPI inflation rate. The dashed blue line denotes the model-predicted path of year-on-year inflation rate
compatible with the 5-Year, 5-Year SPF CPI inflation expectations remaining stable at their observed 2022Q4
level over the next 5 years. The green filled circles denote actual year-on-year CPI inflation rate in the
first three quarters of 2023. The median Summary of Economics Projections for the fourth-quarter over
fourth-quarter PCE inflation rates in 2023-2025 are denoted by the empty green circles. For comparability
we map the SEP from PCE units into CPI units assuming a bias of 30 basis points. The empty green upward
(downward) arrows show the upper (lower) range of the SEP projections.

expectations remain stable, the model determines the corresponding path of inflation. Using
this inflation path, we then compute the smoothed, implied trend inflation to validate or
refine the initial guess. The resulting anchoring-compatible inflation path is the solution to
this fixed-point problem for trend inflation. All parameters are set to their estimated value
in 2022Q3. In sum, finding the anchoring-compatible path essentially involves forecasting
inflation, conditional on long-run expectations remaining fixed at their 2022Q4 level over the
next five years and on trend inflation being consistent with the resulting path.30

Although inflation expectations are not particularly sensitive to the inflation signal, they
respond noticeably to the coordinating and idiosyncratic signals, which are influenced by
trend inflation. The elevated trend inflation estimated at the end of 2022 exerts upward
pressure on long-run inflation expectations by keeping these signals elevated. The anchoring-
compatible inflation path must counteract this upward pressure, which, if unaddressed, could
lead to elevated trend inflation becoming ingrained in inflation expectations, causing their
de-anchoring. Communicating a shallower path of inflation would reduce trend inflation,
thereby mitigating the upward pressure on inflation expectations. These dynamics underscore

30Since the cross-section of expectations over the next five years is unobservable, we set the realizations
of the idiosyncratic innovations to zero but assume forecasters continue to interpret idiosyncratic signals
as noisy information. We also assume that inflation and trend inflation converge to the average long-run
inflation expectations after five years and remain there indefinitely.
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the intricate interplay between the inflation path, trend inflation, and long-run expectations
in our model.

In Figure 7, the blue dashed line represents the inflation path consistent with anchored
average long-run CPI inflation expectations from 2022Q4 through 2027Q4. This path features
a relatively rapid decline in 2023, followed by a slower convergence to the level at which average
long-run inflation expectations are assumed to remain anchored. This level, indicated by the
horizontal black dotted line, corresponds to the median SPF long-run inflation expectations
in 2022Q4, the starting point of this exercise.

Now we compare the anchoring-compatible path with the median and the upper-lower
range of the Federal Reserve’s Summary of Economic Projections (SEP) released following
the meeting of the FOMC in December 2022, which are denoted by the green dots and arrows
in Figure 7.31 The inflation path projected by the FOMC in its SEP aligns closely with the
path generated by the model. This alignment suggests that the model interprets the inflation
path communicated by FOMC members as broadly consistent with maintaining anchored
average long-run inflation expectations, despite the elevated inflation and trend inflation
observed at the end of 2022.

In Figure 7, we also compare the anchoring-compatible path of inflation with the actual
year-on-year CPI headline inflation observed in the four quarters of 2023 (solid green circles).
These observations are remarkably close to the anchoring-compatible path of inflation
generated by our model. Given that average SPF inflation expectations have remained
very close to their 2022Q4 level throughout this period (as shown in the figure in Appendix
F), we regard this alignment as an indirect empirical validation of our model’s accuracy and
relevance.

10 Concluding remarks

We develop and estimate a new framework for understanding the formation of long-run
inflation expectations, leveraging panel data from the U.S. Survey of Professional Forecasters.
The findings underscore the role of cognitive distortions, in particular overconfidence in private
information and a persistent expectations bias, in shaping forecasters’ beliefs about long-run
price dynamics. By capturing key features of the data, the model reveals substantial, time-
varying heterogeneity in forecasters’ responsiveness to public information, with sensitivity
declining for all forecasters when monetary policy is constrained by the ELB.

Moreover, the model provides a practical framework for assessing whether the inflation
31The SEP is available at https://www.federalreserve.gov/monetarypolicy/fomc.htm. Note that the

SEP reports only the Q4/Q4 headline PCE inflation rate. For comparability, we convert the SEP projections
into CPI units by assuming a gap of 30 basis points.
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paths communicated by policymakers align with their objective of maintaining well anchored
long-run inflation expectations. These insights are helpful for understanding the formation of
long-run inflation expectations and for informing effective monetary policy strategies.

While this paper primarily focuses on the cognitive biases driving the formation of
forecasters’ beliefs about long-run inflation, an important avenue for future research is
identifying the events and episodes that drive time-series and cross-sectional fluctuations in
forecasters’ sensitivity to public information. Exploring these dynamics could deepen our
understanding of how expectations evolve under varying economic conditions and policy
regimes.

In future work, this framework could also be extended to other (potentially) nonstationary
variables, such as expectations regarding long-run real GDP growth, productivity growth or
the long-run level of interest rates, which are also asked by the SPF, albeit at a lower frequency.
Investigating how public and private information shape the distribution of expectations—and
their resulting macroeconomic effects—would add to the growing literature on how changes
in the distribution of expectations across forecasters impact the economy, e.g. (Ascari et al.,
2024).
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A Detailed model description

A.1 Derivation of model equations

The environment confronted by forecaster i has a state-space representation given by

ξt(i) = Φt(i)ξt−1(i) + Rt(i)et(i) (12)
yt (i) = D(i)ξt(i) + Qut (13)

where

ξt(i) = [ψt, π̄t, vc,t, vt(i)]′

et(i) = [ηt, λt, νc,t, νt(i)]′

yt(i) = [πt, s̃t(i), st(i)]′

ut = [ωt, ω2,t, ω3,t]′ .

Here Φt(i) is a k × k matrix which depends on ϕt, ρc and ρ(i), where k = 4 is the number
of state variables; Rt(i) is k × 4 and depends on ση,t, σλ,t, σc,t, σν(i); D(i) is a 3 × k matrix
and Q is 3 × 3 and depends on σω. πt, s̃t(i) and st(i) refer to the inflation, coordinating and
idiosyncratic signals, respectively. The measurement errors ω2,t and ω3,t are just added for
completeness but their variance is zero so they are irrelevant. The detailed definitions are as
follows:

Φt(i) =


ϕt 0 0 0
0 1 0 0
0 0 ρc 0
0 0 0 ρ(i)

 , Rt(i) =


ση,t 0 0 0
0 σλ,t 0 0
0 0 σc,t 0
0 0 0 σv(i)

 (14)

D(i) =

 1 1 0 0
0 1 α(i) 0
0 1 0 1

 , Q =

 σω 0 0
0 0 0
0 0 0

 (15)

The Kalman filter recursion for forecaster i is given by:

ξt|t−1 (i) = Φt(i)ξt−1|t−1 (i) (16)
Pt|t−1 (i) = Φt(i)Pt−1|t−1 (i) Φt(i)′ + Rt(i)Rt(i)′ (17)
st|t−1 (i) = D(i)ξt|t−1 (i) (18)
Ft|t−1 (i) = D(i)Pt|t−1 (i) D(i)′ + QQ′ (19)

ξt|t (i) = ξt|t−1 (i) + Pt|t−1(i)D(i)′
[
Ft|t−1 (i)

]−1

︸ ︷︷ ︸
Kt(i)

[
yt (i) − D(i)ξt|t−1 (i)

]
(20)

Pt|t (i) = Pt|t−1 (i) − Pt|t−1 (i) D(i)′
[
Ft|t−1 (i)

]−1
D(i)Pt|t−1 (i) (21)

Kt (i) is the Kalman gain of forecaster i which represents how sensitive beliefs about the
different state variables are to new information captured by the three signals. In this rational
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model the Kalman gain captures the optimal weight given to new information.
Re-arrange the Kalman filter recursions as follows to obtain equation:

ξt|t (i) = ξt|t−1 (i) +Kt (i)
[
yt (i) − D(i)ξt|t−1 (i)

]
(22)

= [I4 −Kt (i) D(i)] Φt(i)ξt−1|t−1 (i) +Kt (i) yt (i) (23)
= [I4 −Kt (i) D(i)] Φt(i)ξt−1|t−1 (i) +Kt (i) [D(i)ξt(i) + Qut] (24)
= [I4 −Kt (i) D(i)] Φt(i)ξt−1|t−1 (i) +Kt (i) [D(i)(Φt(i)ξt−1(i) + Rt(i)et(i)) + Qut](25)

Putting the trend-cycle model and the combined the signal extraction problems of all
forecasters together gives our state space model of the econometrician.

The transition equation we use in our panel estimation reads

 ξt−→
ξ t|t
ωt

 = Φ̃t

 ξt−1−→
ξ t−1|t−1

0

 + R̃t


ηt

λt

νc,t−→νv,t

ωt

 (26)

where −→
ξ t|t and −→νt are column vectors stacking ξt|t (i) and νt(i) of every forecaster. Note that

ξt contains the idiosyncratic noise processes for all forecasters, i.e.

ξt =
[
ψt π̄t vc,t

−→vt

]′

.
The measurement equations for our panel estimation are

πcpi
t

ψest
t

π̄est
t

Etπ
long
t (1)

Etπ
long
t (2)
...

Etπ
long
t (N)


=



DCPI 01×k 01×k ... 01×k σω

11 01×k 01×k ... 01×k 0
12 01×k 01×k ... 01×k 0

01×k 12 01×k ... 01×k 0
01×k 01×k 12 ... 01×k 0

... ... ... . . . ... ...
01×k 01×k 01×k ... 12 0





ξt

ξt|t (1)
ξt|t (2)

...
ξt|t (N)
ωt


, (27)

where DCPI is a zero row vector of length N+k-1 with elements 1 and 2 equal to 1. 1n

denotes the 1 × n row vector with elements all equal to zero except the n-th one which is
equal to one. The observable variables in the vector on the left hand side of equation (27)
include an empirical measure of inflation such as CPI inflation, πcpi

t , our estimates of the
cyclical component, ψest

t , trend inflation, π̄est
t , and an empirical measure of long-run inflation

expectations of forecasters, πlong
t (i).

Behavioral model
We allow each forecaster to have forecaster-specific views on the model parameters of the
coordinating and idiosyncratic signal processes which can be different from the "true" estimates
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based on the model described above. More specifically, we can denote these parameters
with * so that we have the following additional parameters: ρ∗

c(i), ρ∗(i), σ∗
ν(i) and α∗(i).

These parameters only enter the Kalman filter recursion for each forecaster and thereby
also influence the matrix Φ̃t in the transition equation defined in equation (26). R̃t and
the measurement equation remains unchanged. More specifically, in equations (16)-(20) the
forecaster’s beliefs about the parameters are used instead of the "true" estimates so that

ξt|t (i) = ξt|t−1 (i) +K∗
t (i)

[
yt (i) − D∗(i)ξt|t−1 (i)

]
= [I4 −K∗

t (i) D∗(i)] Φ∗
t(i)ξt−1|t−1 (i) +K∗

t (i) [D(i)(Φt(i)ξt−1(i) + Rt(i)et(i)) + Qut]

Note that the variables with ∗ do not appear in yt(i) since these are the true signals. K∗
t (i) is

the subjective Kalman gain by forecaster i. As before this represents how sensitive beliefs about
the different state variables are to new information captured by the three signals. Differently
from the rational model, the parameter misperceptions imply that this Kalman gain is
subjective and does not necessarily capture the optimal weight given to new information.

A.2 Initial conditions for estimation

Initial conditions of trend-cycle model
We initialize the state equations of our trend-cycle model as described in equations (1)-(3)
as follows: ϵ0 = 0, π̄0 = 0. The initial uncertainty is set to the unconditional variance
for ϵ0 and to 1e6 for π̄0. The time-varying parameters are initialized as ln(σ2

η,1) ∼ N(0, κ),
ln(σ2

λ,1) ∼ N(0, κ), ϕ1 ∼ N(0, κ) where κ=1e6.

Initial conditions of forecaster model
As usual in the literature on factor models the relative scale of loadings and factors is
indeterminate and requires a normalization. We set log(σ2

c,0) = 0.
We assume that for each forecaster the initial variance-covariance matrix P0|0(i) in

equation (17) is at the "steady-state"32 level given the initial parameter values. To compute
this steady-state matrix we start from the following matrix

P0|0(i) =



σ2
η,1991Q2

1−ϕ2
1991Q2

0 0 0
0 1 0 0
0 0 1

1−ρ2
c

0
0 0 0 σ2

ν(i)
1−ρ(i)2

 (28)

and we iterate over equations (17), (19), (21) to get the "steady-state". The values from
1991Q2 are used since our first period of the panel model is 1991Q3.

32Intuitively, this implies that forecasters have already received some signals before and are not completely
uninformed about the history of inflation. Alternatively, we could assume that forecasters have never received
any signals before, including inflation, and impose a wide/uninformative initial uncertainty. This would lead
to large initial spikes in the Kalman gains since forecasters react a lot to the first few signals but results for
rest of the sample are little affected.
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Initial conditions of panel model
The initial conditions for the first part of the transition equation defined in equation (26) are
as follows:

ξ0 ≡


ϵ1991Q2
π̄1991Q2

0
0N×1

 (29)

P0 ≡


0 0 0 01×N

0 0 0 01×N

0 0 1
1−ρ2

c
01×N

0N×1 0N×1 0N×1 IN×N

−−→
σ2

v

1−ρ2

 (30)

The zeros in the upper left 2 × 2 part mean that we do not want the panel estimation to
change the initial estimate of trend and cycle that we got from the time series estimation.

Denoting with ξe
0|0(i) the initial condition of the econometrician for the state estimate of

forecaster i, we assume

ξe
0|0(i) ≡


ϵ1991Q2
π̄1991Q2

0
0

 , ∀i (31)

ω0 is set in line with the estimate of the i.i.d. component for 1991Q2 again assuming zero
uncertainty since we do not want the panel estimation to change the initial estimates of the
trend-cycle model.

The initial covariance matrix is based on deriving the variance of ξt|t(i) and is given by

Σt(i) = var(Kt(i)yt(i)) (32)
= Kt(i)var(D(i)ξt(i) + Qut)Kt(i)′ (33)
= Kt(i)[D(i)var(ξt(i))D(i)′ + QQ′]Kt(i)′ (34)
= Kt(i)[D(i)Pt|t(i)D(i)′ + QQ′]Kt(i)′ (35)

We can evaluate this at time 0 using P0|0(i) and the corresponding K0(i) as defined above, so
that

Pe
0|0(i) ≡ Σ0(i), ∀i (36)

The remaining elements of the initial covariance matrix for equation (26) are assumed to be
zero.
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B Selection of forecasters

Figure 8: Trend inflation and full sample of long-run inflation expectations. Trend component of
U.S. quarterly headline CPI inflation rate estimated using the trend-cycle model (red dotted line) and the
mean (black solid line), the interquantile range (the dark blue bands), and the min-max range (the light blue
bands) of the distribution of SPF long-run CPI inflation expectations including all forecasters in the survey.

Figure 9: Time series of aggregate inflation expectations. The dashed vertical line indicates 2011Q1
before which we use 10-year average expectations and afterwards 5-year 5-year expectations.
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Figure 10: Number of total and selected forecasters in SPF.
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C The estimated trend-cycle model

The priors and posterior mean for the time-invariant parameters of the trend-cycle model are
shown in Table 2.33 The posterior mean of the time-varying parameters are shown in Figure
11. The volatility of the trend component of inflation peaks during the Great Inflation at 44
basis points (bps) and again in the early 1980s. Trend inflation volatility declines remarkably
quickly over the ensuing 20 years, leveling off around 25 bps around 2000. In the most recent
period, the volatility of trend inflation has been increasing again. Nevertheless, the recent
rise is not nearly as quick as the surge observe in the 1960s and early 1970s. We estimate
that the volatility of trend inflation is just a touch below 30 bps at the end of our sample
period (the second quarter of 2023.)

Table 2: Prior and posterior moments for the trend-cycle model parameters
Prior moments Posterior moments

Parameters Distr. Shape Scale Mean 5%-95% Range Mean 5%-95% Range
γ2

η IG 5 0.040 0.010 [0.0040.0.0200] 0.054 [0.0185,0.1174]
γ2

λ IG 5 0.040 0.010 [0.0040.0.0200] 0.011 [0.0045,0.0276]
γ2

ϕ IG 5 0.004 0.001 [0.0004,0.0020] 0.002 [0.0006,0.0032]
σ2

ω IG 3 0.200 0.100 [0.0320.0.2450] 0.143 [0.0382,0.3524]

Notes: IG stands for inverse gamma distribution. The shape and scale are parameters of that distribution.
The posterior mean and the interquantile range are computed via Gibbs Sampling.

The volatility of cyclical inflation is much larger than that of the trend component. It
peaks in 1980 and again during the Great Recession. Cyclical volatility of inflation fell very
sharply after reaching its second peak, reaching a trough at around 1.6 percent in the 2010s.
Interestingly, cyclical volatility started increasing before the onset of the pandemic. In the
last quarters of the sample cyclical volatility slipped slightly below its third peak 2.5 percent
reached during the pandemic crisis.

The persistence of the cyclical component starts increasing in the 1960s and peaks toward
the end of the Great Inflation, topping out around 0.8. Persistence falls gradually thereafter
and settles at about 0.30 in the middle of the 2000s. Since the onset of the Great Recession,
cyclical persistence has been rising, following a pattern that resembles the volatility of trend
inflation on the left panel. The persistence of cyclical inflation is close to 0.55 at the end
of the sample period. The estimates shown in Figure 11 are very similar to what found
by previous works in the literature—e.g Chan et al. (2018)—and overall seem to provide a
plausible characterization of inflation over the last 60 years.

Table 3 shows the forecasting performance of the estimated trend relative to the trend
estimated with alternative prior or model specifications. The evaluation is based on the
root-mean squared error between the trend and long-run realized CPI inflation. First,

33We describe how we initialize the state vector in Appendix A.2. Following Chan et al. (2018) and Stock
and Watson (2007) we assume the initial value of the trend is zero and allow a very wide initial uncertainty
so the trend in the second period of the sample is relatively unconstrained. The stochastic volatities are
approximated following the approach by Kim et al. (1998) and using the more accurate 10-component
Gaussian mixture approximation proposed by Omori et al. (2007).
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Figure 11: Posterior mean for the time-varying parameters of the trend-cycle model. The
estimation of the three time-varying moments is conditional on quarterly U.S. headline CPI inflation rate
observed over the period 1959Q1–2023Q2. Trend volatility and cyclical volatility are expressed in percentage.
The shaded blue area indicates the sample period for the second-step panel estimation (1991Q3-2023Q2).

Table 3: Forecasting performance of estimated trend

Full sample SPF panel sample
10Y 5Y5Y 10Y 5Y5Y

I. Alternative priors
Baseline 1.00 1.00 1.00 1.00
Wider prior 0.97 1.02 1.08 1.05
2x prior mean 1.00 1.00 1.01 1.00
5x prior mean 0.97 1.01 1.00 1.00

II. Alternative model specifications
No noise component 0.98 1.00 1.00 1.00
Constant parameters (tight prior) 1.20 1.24 1.48 1.26
Constant parameters (wide prior) 1.11 1.19 1.30 1.17
No persistence in cyclical component 1.23 1.25 1.14 1.09

Notes: Root mean squared errors (RMSE) relative to baseline model. Root mean squared errors of
different trend estimates and realized inflation. The first two columns show the results over the full sample
from 1959 onwards and the last two rows for the SPF panel sample from 1991Q3 onwards. In both cases the
first column shows the RMSE with respect to 10-year average CPI inflation and the second column with
respect to average inflation between 6 and 10 years ahead. All RMSE are scaled relative to the baseline
model so that a value lower than 1 indicates a better forecasting performance than the baseline model.
Wider prior (second row) uses a shape parameter of 1.5 instead of 5 in the IG prior distribution. Rows 3 and
4 adjust the scale parameter such that the prior mean is twice or five times larger, respectively. The 5th row
is based on a model without the noise component ω. The 6th and 7th row report the RMSE for our baseline
model but assuming parameters are constant. The 8th row reports the RMSE for the univariate model from
Stock and Watson (2016) estimated using CPI headline inflation. This model allows for stochastic volatility
and outlier adjustments but the cyclical component has no persistence.

the relative differences in the root-mean squared error are very small for alternative prior
specifications, highlighting the robustness of our prior choice. Second, using a model with
constant parameters leads to significantly larger forecast errors underscoring the importance
to allow for time-variation in parameters even if this complicates the modelling framework.
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Third, modelling the cyclical component as iid - as for example done in Stock and Watson
(2016) - leads to a more volatile trend estimate that removes high-frequency movements in
current inflation but is less suited for forecasting inflation at longer horizons.
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D Priors and posterior modes of the models’ parameters

Table 4: Prior distribution and posterior mode for the parameters
Prior moments Posterior mode

Parameters Distr. Par(1) Par(2) Mean 5%-95% Rational Behavioral
ρc B 2.63 2.63 0.50 [0.17,0.83] 0.99 0.96
α(i) IG 3.00 1.00 0.50 [0.16,1.22] Figure 2 Figure 2
ρ(i) B 2.63 2.63 0.50 [0.17,0.83] Figure 2 Figure 2
σν(i) IG 3.00 1.00 0.50 [0.16,1.22] Figure 2 Figure 2
ρ∗

c(i) B 2.63 2.63 0.50 [0.17,0.83] NA Figure 3
α∗(i) IG 3.00 1.00 0.50 [0.16,1.22] NA Figure 3
ρ∗(i) B 2.63 2.63 0.50 [0.17,0.83] NA Figure 3
σ∗

ν(i) IG 3.00 1.00 0.50 [0.16,1.22] NA Figure 3

Notes: B and IG stand for beta, and inverse gamma distributions. Par(1) and Par(2) are the shape and scale
for the inverse gamma distribution, respectively, and are the shape parameters α and β for the beta
distribution.

In Table 4, we summarize prior moments and the posterior mode of the models’ pa-
rameters. Priors are fairly uninformative, reflecting the beliefs that the SPF data should
be primarily driving the setting of the parameters values. For the time-varying volatility
of coordinating innovations, σc,t, we normalize the starting value ln σc,0 at zero. This is a
standard normalization since the initial value σc,0 cannot be separately identified from the
scale of the forecaster-specific α(i) (Del Negro and Otrok, 2008). The parameter governing
the scale of innovations in the random walk process for ln σ2

c,t, which was denoted with γc, is
set to 0.5. In Table 4, the estimation drives the auto-correlation of the coordinating noise
process, ρc, to a value very close to one, implying that it follows a near-unit root process.
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E Empirical performance of the rational model

Figure 12 shows the impulse response functions to all four shocks comparing the rational and
behavioral model.

Figure 12: Propagation of shocks to expectations. Impulse response functions of long-run inflation
expectations of every forecasters to a one-standard-deviation cyclical inflation shock (top left chart), trend
inflation shock (top right chart), noise innovation to the coordinating signal (bottom left chart) and to every
idiosyncratic signal (right chart). Responses in the rational model are denoted in blue and those in the
behavioral model are denoted in green. The solid lines denote the median response across forecasters and the
shaded areas denote the 90 percent range of responses across forecasts. The red dashed line shows the true
response of trend inflation. The impulse response functions in both graphs are computed in every period of
the sample (1991Q3-2023Q2) and then averaged across sample periods.

The following figures show some robustness to the misspecification of the rational model.
The two dimensions of misspecification are the serial correlation of the coordinating signal
innovations and the deviation from Gaussianity in the distribution of the idiosyncratic signal
innovations. In our baseline model the trend comes from an estimated trend cycle model.
Instead, in Figure 13 we take the same rational model but assume that the trend is simply
equal to a 5-year (lhs) or 10-year (rhs) moving average of headline CPI inflation. This
assumption about the trend imposes less assumptions and at the same time still captures the
underlying slow-frequency movements in inflation. In the left panel of Figure 14, we estimate
the trend using core CPI inflation instead of headline CPI inflation. In all three cases the
trend and the parameters of the trend-cycle model are based on the full-sample information
and we assume forecasters know the parameters. In the rhs panel of 14 we estimate the
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trend-cycle model with headline CPI inflation in real-time so that the parameters do not only
change over time but also with every vintage. The idea here is to mimic forecasters learning
the parameters over time and to see whether this can fix the misspecification of the baseline
rational model. In all four cases the rational model still exhibits the same two dimensions of
misspecification.

Figure 13: Rational model: assessing the misspecification under moving average trend. The
upper charts show the autocorrelogram of the estimated in-sample innovation to the coordinating signals.
The horizontal red lines are the 95-percent confidence bands for statistical significance. The lower charts
show the distribution of all the estimated in-sample innovations to the idiosyncratic signals over time and
across forecasters. The figures correspond to the rational model and the true trend being a 5-year moving
average of CPI inflation (lhs) and a 10-year moving average of CPI inflation (rhs), respectively.

51



Figure 14: Rational model: assessing the misspecification under core inflation and real-time
estimation. The upper charts show the autocorrelogram of the estimated in-sample innovation to the
coordinating signals. The horizontal red lines are the 95-percent confidence bands for statistical significance.
The lower charts show the distribution of all the estimated in-sample innovations to the idiosyncratic signals
over time and across forecasters. The lhs figure corresponds to the rational model with core CPI inflation
instead of headline CPI inflation. The rhs figure is based on a real time estimation of the trend-cycle model.
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Figure 15: Behavioral model only with overconfidence: assessing the misspecification. The left
chart shows the autocorrelogram of the estimated in-sample innovation to the coordinating signals. The
horizontal red lines are the 95-percent confidence bands for statistical significance. The right chart shows
the distribution of all the estimated in-sample innovations to the idiosyncratic signals over time and across
forecasters. The model only allows for overconfidence, i.e. σ∗

ν(i) ̸= σν(i) is allowed, while for all other
parameters in the signal extraction problem there is no deviation from rationality.
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F Anchoring-compatible inflation path derivation

In the following we describe the detailed procedure underlying the exercise in section 9. We
take the perspective of a FOMC policy maker in December 2022 so that the latest available
data is 2022Q3 for inflation and the SPF survey round from 2022Q4 (answered in November
2022).

(i) Initial guess for trend inflation: We use the median path for PCE inflation from the
December 2022 Summary of Economic Projections (SEP). For each year from 2023-2025,
the forecasts refer to the year-on-year growth rate of the fourth quarter. We apply these
year-on-year growth rates to the CPI index and linearly interpolate the missing quarters.
Then we compute quarterly annualized growth rates and add 30 bps to be consistent
with CPI inflation being on average 30 bps higher than PCE inflation. Finally, we
apply a 4-quarter moving average to that projection path to avoid jumps generated by
the fact that we only have one SEP projection per year. From 2026 onwards we assume
PCE inflation is at 2 percent and CPI inflation at 2.3 percent accordingly. Note that is
just an initial guess and in principle any inflation path can be used. Then, we use this
inflation path in our trend-cycle model to estimate the inflation trend going forward
from 2022Q4.

(ii) Estimate of inflation path: We obtain estimates of the inflation path from 2022Q4-
2025Q434 by applying the Kalman smoother to the state-space model as defined in
equations (26)-(27) except that the measurement equations are modified as follows:

• Inflation: For 2022Q4 we impose actual realized but afterwards the path of inflation
is treated as missing. The assumption here is that at the time of the FOMC
meeting in mid December the quarter is almost over and inflation in that quarter
cannot really be influenced anymore.

• Trend inflation: We set trend inflation equal to the initial guess from step (i)
• Iid component of inflation: We set the i.i.d. component to zero
• Expectations: Individual inflation expectations are not available and since we

want to keep expectations stable at their current value we impose that average
inflation expectations are equal to the average value from the 2022Q4 SPF round
(see Figure 16 for the path of stable expectations and realized average expectations
since 2022Q4). Note, this is only imposed for forecasters who have been in the
sample during the two years prior to December 2022.

• Idiosyncratic signals: We set the innovations to idiosyncratic signals to zero. The
idea is to focus only on the role of coordinating sig vs inflation in this exercise.

The state-space model is initialized using the estimated states in 2022Q3 from our
baseline estimation. The time-varying parameter σc,t is fixed at the last estimate from
2022Q3 and the time-invariant parameters are kept as in our baseline estimation.

34In the long run, i.e. after 2025Q4, we assume trend inflation is equal to average expectations and the
cyclical+i.i.d. components are zero.
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(iii) The inflation path from the previous step is not necessarily consistent with the initial
guess for trend inflation. Therefore, we apply the Kalman smoother on the trend-cycle
model going forward from 2022Q4 to obtain a new trend estimate that is consistent
with the inflation path from step (ii).35 With this new trend estimate we restart step
(ii) and solve for a "fixed point" by iterating over these steps until convergence in the
inflation path.

Figure 16: Average long-run inflation expectations. The black solid line shows average long-run
inflation expectations until 2022Q4 when we start the exercise. The dashed black line shows the realizations
of average SPF long-run inflation expectations observed since 2022Q4. The red dotted line corresponds to
the level of stable average expectations from 2022Q4.

35For simplicity we assume that the trend estimate before 2022Q4 remains unchanged and we keep all the
parameters fixed at their 2022Q3 values. In line with (ii) we impose that the i.i.d. component is zero.
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